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Frequency Response Characteristics of the Multiport
Planar Elliptic Patch
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Abstract—Currently there is no analytical formulation for the mul-
tiport elliptic patch. In this paper the single series Green’s function for
the elliptic patch is derived and its impedance matrix is formulated.
Theoretical and experimental results are compared for a four port el-
liptic patch.

I
I. INTRODUCTION

I I \ “ =43
Due to the ability of the elliptic patch to generate circular polar-

ization with a single feed port, several methods have been devel-

oped to deal with it. The methods of solutions adopted are moment

method [7], spectral domain method [8], vector Mathieu trans-

forms [9] and GTLM [10]. However, for the mukiport patch the

two dimensional cavity model Green’s function is more appropri-

ate. The Green’s function of various configurations such as circu-

lar, triangular and rectangular are available in the literature [5].

The main advantages of the Green’s function approach is that it

requires less computational effort and it predicts the device per-

formance over a wide band, provided that losses are taken into

account. In this paper the Green’s function for the elliptic patch is

developed using differential operators [2]; this method obtains the

Green’s function directly, without having to expand over the ei-

genvalues. The resulting series is highly convergent. From the

Green’s function, the impedance matrix is formulated for the ellip-

tic patch. Experimental and theoretical results show good agree-

ment.

v = .M2 v = -5TJ12

Elliptic coordinate system. x = 1 cosh v cos v; y = 1 sinh u sin v.Fig. 1

subject to the boundary condition for a perfect magnetic wall as

[i) G/8u]U=U, = O.

The Green’s function is obtained by inverting the differential op-

erator [2], allowing the solution to be expressed in the desired form:

either in single series or double series form.

We define the differential operators as follows

az ‘
Ll=G+; cosh2u

az hz
L2 = –~+~cos2u. (3)

Then equation (2b) can be restated as

(L, – &)G = –8(u – Uo)ti(v – L’o). (4)

II. GREENS FUNCTION
Clearly the operators are commutative, thus one of the operators

can be taken as constant, reducing the problem to a single dimen-

sion. Taking L2 to be constant, one has

Fig. 1 shows the elliptic coordinate system. The inhomogeneous

Helmholtz equation in elliptic coordinate for the potential of the

elliptic patch fed by a current source J: (UO, U.), is given as
d2 G

du 2-( )
– &cosh2u = –6(U – Uo) 8(U – VQ). (5)1

[

82*
+ a’~

(cosh 211 – Cos 22J)1’/2 auz 1~ +kz~

Equation (5) is the inhomogeneous Mathieu radial differential

equation. First we consider the homogeneous Mathieu radial dif-

ferential equation

= –jarp d: (uo, u.). (1)

where 21 is the focal distance of the elliptic patch and k is the wave-

uumber. Equation (1) was obtained under the assumption that d /~z

= O. To solve (1), the current source is replaced by a unit impulse

at the source position, thus

dz G

–(

_ L, _ g Cosh ~u

du2 - 2 )
=0 (6)

which has a general solution given by
1

[– –

a2G a2G

(cOsh 2U – cos 2v) 12/2 au’ + au’ 1+k2G
(7a)

(7b)

Ge = .Te(L,)(h, cosh u), 05 U5U,

6(U – uo)13(v – Uo)——
– (cosh 2U - COS 2v) 1’/2

(2a) Ge = f+~,)(k U, u), 0< U5U1

where
where h = lk = lw~c = 21rl/A. Simplifying one has

fen(h, Ul, u) = YeJ (h, cosh u]) Jen (h, cosh u)

– .Te~(h, cosh u,) Ye. (h, cosh u)

first kind even radial Mathieu function

second kind even radial Mathieu function

even Green’s function

a2G #G hz
— — (cosh 2U – COS 2v) G

auz aV2 + 2

Jen (h, cosh u) == –6(U – u~) 6(V – Uo) (2b)
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Ge z

Here, for simplicity we have only considered the even solution; the

odd solution has a similar format.
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The solution of (5) is then constructed as follows the following eigenvalues and normalized eigenfunctions,

continuity condi- Again only the even solutions are considered; the odd solutions

have a similar format. Now as the functions are complete and or-

(9a)
thonormal, we have by [2, p. 264]

IJq~,, (k Cosh u), osu<u~
Ge = An= n; VeE= ‘~$~~~) (14)

~e(~,)(h, Ul, u), u~ < u s u,. (8)

However, equation (8) still does not satisfy the

tion at the point u = Uo. i.e.

GIU=U; = GIU. U;

dG dG m Se. (h, cos u) Sen(h, cos U.)

= 8(V – Vo).
6(V -- q)) = z (15)

ZU=gi – ZU=u:
(9b) ~=o M: (h)

For condition (9a) to be satisfied, (8) requires a modification of the
also by [2, p. 259] for any continuous function F(n), we have

magnitude; thus
F(L2 ) 6 (u – u~ ) = ~;. F(n)

Sen(h, cos 0) Sem(h, cos Uo)

[

. (16)
~e(~,) (h, cosh u).fe@) (h, ul, uo ), 05 U<U0 M;(h)

Ge =

fe(L2) (h, U,, u)~et~,, (h, cosh UO), Uo<us u,. (10) Using (16) to simplify (12), one has

M Jen(h, cosh u) fen(h, u,, uo)Sen(h, cos .v)Sen (h, cos Uo)
Ge(u, Vluo, Vo) = ~

.=O kf~(h).le~(lr, cosh U1)

In a similar manner, the odd Green’s function is then

(17a)

m~On(h, cosh U) fOm(h, U,, UO)SOn (h, COS v) So. (h, COS Uo)
Go(u, OIUI), Vo) = ~

X=1 M;(h) Jo:(h, cosh U,)

O<usuosu, (17b)

Applying condition (9b) to (10), we have

dG dG
= Je(L,) (h, cosh uO).fe(L,J(h, ul, UO)

Xlu=u{ – Zu=u:

– fe[L,)(h, u,, uo)Je(~2)(h, cosh Uo).

With some manipulation and the fact that ~e(,~,)(h, Uo, Uo) = 1 (i.e.

the Wronskian W(Jen, Yefl ) = 1), we arrive at

dG dG
= Je~~,)(h, cosh u,)

Xu=u; –Zu=u;
(11)

Thus for condition (9b) to be satisfied, (10) has to be multiplied by

6 (u – Vo) /Je {~,) (h, cosh u,), hence we have

[

Je(L2)(h, cosh u)~e(~,)(h, Ul, ixo) 8(v – Vo)

Je&)(h, cosh U,)

1
0SU5U05U1

Ge =
fe(~,)(h, u,, u) Jq~,)(L Cosh UO) 6(u - vo)

.le(~,)(h, cosh u,)

Equation (12) is the complete even solution of (2b). However, this

solution as it stands is impractical, as it involves a complicated

function of the operator Lz. To obtain a useful solution, further

transformations are required. For these transformations, the eigen-

values and normalized eigenfunctions of the (operator Lz are needed.

These are obtained by assuming L, is constant. This results in the

homogeneous equation

d2 V

-(

h2

)
z+ L1–~cos2u V=O

dv
(13)

which is the circumferential Mathieu differential equation and has

where

fon(h, U,, Uo) = Yo; (h, cosh u,) Jon(h, cosh Uo)

– .lo;t(h, cosh U,) Yon(h, cosh Uo);

the complete Green’s function is then given by

G(u, Vluo, Uo) = Ge(u, Vluo, O.) + Go(u, Vluo, Vo). (18)

Note that the above Green’s function is for a unit impulse only, to

obtain the Green’s function for the patch one needs only to multiply

equation (18) by ju~d.

III. IMPEDANCE

The elements of the impedance matrix for a multiport elliptic

disk are given by

Zq= s!& ~ ~G(slso) ds (is.
l.r’J

For the elliptic patch, this reduces to

z,=~
u,+A,

s!

z,,+ A,

G(u,, +j> ~0)
t$’’, wj .,-A, v-A,

(19)

. [sinh 2 u, + sin2 o] 1lz [sinhz u, + sin2 Vo] 1fz duo dv

where

W, = Width of Port,

[

w,
A, s sin – 1 121&2 Ui + sinz vi ‘

Substituting for Go from (17) and defining

!

t,,+ A,

ZSe. (/s, tiz, A,, u,) = ,,,_~, Se. (h, cos u)

. [sinhz u, + sinz V]112 dv

(20)

(2 la)
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Fig. 2. Four port elliptic patch
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Fig. 3. Experiment and theoretical results for 1,S,, 1.

sU, + A,

z&ln(h, ?),, A,, Ui) = ,,, _A, hn(h> COS V)

“ [sinhz ~i + sinz rY]1f2 du. (21b) .Jo. (h, cosh u,) ZSo, (h, u,, Al, ~,)ZSO.(h, V,, AJ, u,)

The above integrals can be evaluated using numerical integration.
M;(h)~O~(h, cosh U1)

The impedance elements are then given by (23b)

—z
Je. (h, cosh u,)~e~(h, %, u,)lSe~(h, v,, A,, u,)zSe. (h, v,, A,, u,)~: = kwdzz m

W,WJn=o M~(h).le~(h, cosh u,)
(22a)

Osusuo <u,

where

~e.(h, u,, Uo) = Ye~(h, cosh ul).Te. (h, cosh Uo)

– .Je:(h, cosh u,) Ye. (h, cosh UO)

~0.(/’Z, U,, U~) = Yoj(h, cosh U, )~On(/’S, cosh Uo)

– ~O;()’Z, cosh U1 ) Yon(h, cosh Uo).

For the special case when u] = U1, i.e. when the Jth ports are at

the periphery j using the Wronskian of Mathieu functions, the

impedance matrix elements reduce to

Jefl (h, cosh ul)lSem(h, v,, A,, u,) ISeK(h, v,, A,, u,)

M~(h)Je~(h, cosh U1)

(23a)

(22b)

The matrix elements are then

Z,l = z; + z: (24)

IV. EXPERIMENTAL AND THEORETICAL RESULTS

A four port elliptic was fabricated with dimensions of 4.6 cm

major axis and 3.6 cm minor axis. The substrate was 1.524 mm

thick, with e, = 2.5. The ports were located at (30°, 150°, 210”,

330° ) respectively, see Fig. 2, having width = 4.4 mm and imped-

ance of 50 !2. The experimental and theoretical responses of the

patch are shown in Figs. 3-6. It should be pointed out that con-

nector effects have not been accounted for, and the radiation losses

have not been included in the calculation. However, the effective

size and permittivity of the patch are used in the computation.

Bearing this in mind, the agreement between theory and experiment
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-25+ ‘

— Experimental— Tlwamtlcal

Fig. 6. Experiment and theoretical results for IS,4 \.

is fairly good below 8 GHz, but understandably, diverges away

gracefully above 8 GHz.

The effective permittivity used is given by

[

–1/2
Er+l C, –-l 10d

Eeff —.— l+—
2+2 l(cosh u] + sinb u,) 1

where u, = tanh -1 (Major/Minor)

The effective major and minor axis are calculated using

V. CONCLUSION

Elliptic cross-section devices have not been utilized much in the

past, due to numerical difficulty and the resultant computational

effort required to accurately predict the response. The Green’s

function for the elliptic patch derived in this paper reduces the com-

putational effolt considerably. High degree of convergence was

achieved with about n = 12 modes.

APPENDIX

FORMS OF MATHIEU FUNCTIONS

The definition followed in this paper areas given by Morse [1],

with some modfications. There areseveral different series forewal-

uating Mathieu functions. The reader should be aware that some

published series [1] and [3] are not convergent over the whole

z-plane. Ithasbeen found during thecourse of the computation of

Mathieu functions, that the following forms of Mathieu series are

highly convergent.

First kind even circumferential Mathieu function

Se,n+l,(h, Cos r2) =50A,m+, Cos (z~ + P) ‘r”.

First kind odd circumferential Mathieu function

So,.+,(h, cos V) = ~~o 1%~., sin (2m + P)V.

First kind even radial Mathieu function

Je2,,+P (h, cosh u)

—. J: ~:. (-l)n-”’A2m, +PJ,~+P(lz, cosh u).

First kind odd radial Mathieu function

$
.

Jo2n +P (h, cosh U) = ~tanhum~o(–l)n-m

o (2m + l) B,~+PJ2~+P(Jr, cosh u).

Second kind even radial Mathieu function

Ye2n(h, cosh u)

$Ir

:.

—— --m~o(-1)”-”A2m Ym
(iheu)J”’(~ he-u)

Ye2n+, (h, cosh u)

r7r—

q2 a
—— ~m~o(–1)”-”’42m

1 [Yin+ (iheu)Jm(ihe-u)

+ ‘m(iheu)Jm+ (:he-u)l

(25)

(26)

(27)

(28)

(29)

(30)
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Second kind odd radial Mathieu function

yo2ti +P (h, cosh u)

$n’

5.
= — x (-l) ’-”B,m+p

Bz.p m=o
[Ym+,(~ku)Jm-+p

“(&he’u)-ym-4iheu)J4:he-u)l

(31)

Where p e {O, 1} and J~, Y~ are the conventional Bessel functions.

The normalization constants are

(
277

M;n (h) = [~e2n (h, cos u)]’ dv
JO

cc

[

1 ~=()
—— 2T ~~oA;~/rJ.: u ~ =

2 m+O

[Se2n+ ,(h, cos v)]* dv = x ~~o A;~+ I

.

[Soz. +p(h, COS V)]2 du = rr ~~, B:m+P.
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On The Modal Expansion of Resonator Field in the
Source Region

A. S. Omar, E. Jensen, and S. Liitgert

Abstract—Two field expansions for the electromagnetic field radiated

by electric and magnetic cnrrents in a cavity resonator are presented.
The first utilizes the cavity resonant modes only, while the other uti-

lizes, in addition, the irrotational modes. The first expansion is shown

to be more suitable if the exciting currents have volume distributions.

On the other hand, the second expansion is more suitable if the reso-
nator contains surface or filamentary current distributions. Typical ex-

amples are given to demonstrate the convergence behavior of the two

expansions near and within the source region.

INTRODUCTION

In a field-theoretical analysis of microwave tubes, e.g., kly-

strons, magnetrons, traveling wave tubes, gyrotrons, and oro-

trons, one can divide the describing equations of the structure into

two systems of equations. The first system expresses the electro-

magnetic field in terms of the exciting current(s). It is just Max-

well’s equations with source terms. This system is linear if a small

signal approximation is considered or if the nonlinear materials are

replaced by polarization currents which can be added to the exci-

tation ones. The second system describes the influence of the elec-

tromagnetic field on the motion of the electrons. It expresses then

the exciting current(s) in terms of the excited field. This system is

usually nonlinear except for the small signal analysis. The two sys-

tems must be solved simultaneously. They can be considered to

represent a feedback system with a linear forward transmission and

a nonlinear backward transmission. Well-established methods of

control theory can consequently be applied to this feedback system

in order to study the featuring characteristics like stability, starting

and sustaining oscillation conditions, modulation, noise perfor-

mance, etc.

The analysis of the linear system can be done in either time or

frequency domain. In this paper, the analysis will be conducted in

frequency domain. If time-domain information are needed, e.g.,

for the nonlinear system, an inverse Fourier transform must be

made. Because the interaction between the electron beam and the

electromagnetic wave in most of the microwave tubes takes place

inside a cavity resonator, which may be either partially or com-

pletely shielded, the excited electromagnetic field can be expressed

as expansions in terms of the empty cavity modes. These modes

can be classified into divergence-free modes (which are the cavity

resonant modes) and curl-free (or irrotational) modes.

The accuracy and convergence of these expansions is particu-

larly important within the electron beam, i.e., in the source region,

because accurate expressions for the electromagnetic field within

the beam are necessary for the accurate solution of the nonlinear

system (i. e., the electrons’ equations of motion). It is the aim of

this letter to study the different possible expansions along with their

accuracy and convergence in the source region.
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