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Frequency Response Characteristics of the Multiport
Planar Elliptic Patch

F. A. Alhargan and S. R. Judah

Abstract—Currently there is no analytical formulation for the mul-
tiport elliptic patch. In this paper the single series Green’s function for
the elliptic patch is derived and its impedance matrix is formulated.
Theoretical and experimental results are compared for a four port el-
liptic patch.

I. INTRODUCTION

Due to the ability of the elliptic patch to generate circular polar-
ization with a single feed port, several methods have been devel-
oped to deal with it. The methods of solutions adopted are moment
method [7], spectral domain method [8], vector Mathieu trans-
forms [9] and GTLM [10]. However, for the multiport patch the
two dimensional cavity model Green’s function is more appropri-
ate. The Green’s function of various configurations such as circu-
lar, triangular and rectangular are available in the literature [5].
The main advantages of the Green’s function approach is that it
requires less computational effort and it predicts the device per-
formance over a wide band, provided that losses are taken into
account. In this paper the Green’s function for the elliptic patch is
developed using differential operators [2]; this method obtains the
Green’s function directly, without having to expand over the ei-
genvalues. The resulting series is highly convergent. From the
Green’s function, the impedance matrix is formulated for the ellip-
tic patch. Experimental and theoretical results show good agree-
ment.,

II. Green's FuNCTION

Fig. 1 shows the elliptic coordinate system. The inhomogeneous
Helmholtz equation in elliptic coordinate for the potential of the
elliptic patch fed by a current source J, (i, vy), is given as

1 [a v 9 \If} \ e
(cosh 2u — cos 20)1%/2 2wl
= —jop dJ (ug, vp). 1)

where 2! is the focal distance of the elliptic patch and & is the wave-
number. Equation (1) was obtained under the assumption that 3 / 9z
= (). To solve (1). the current source is replaced by a unit impulse
at the source position, thus
1 [az G 3G
(cosh 2u — cos 20)1%/2 | du* v?
0(u — uy) 6(v — vy)

2] g

- {cosh 2u — cos 20)1%/2 @)
where h = lk = lw/c = 21rl/)\. Simplifying one has
’G  d? n?
— + + — (cosh 2u — cos 20) G
ou- v
= =86 — uy) 6(v - vy) (2b)
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Fig. 1. Elliptic coordinate system. x = [ cosh v cos v; v = [ sinh u sin v.

subject to the boundary condition for a perfect magnetic wall as
[9G /3ul, =, = O

The Green’s function is obtained by inverting the differential op-
erator [2], allowing the solution to be expressed in the desired form:
either in single series or double series form.

We define the differential operators as follows

>k’
L = EWe + —2—cosh 2u
3> n?
L, = ~ 32 + ?cos 2v. 3)

Then equation (2b) can be restated as
Ly — L)G = b — up) 6(v — vp). )

Clearly the operators are commutative, thus one of the operators
can be taken as constant, reducing the problem to a single dimen-
sion. Taking L, to be constant, one has

2 2
% — <Lz - h?cosh 2u> = —8(u —u)) 6(v —vy). (5

Equation (§) is the inhomogeneous Mathieu radial differential
equation. First we consider the homogeneous Mathieu radial dif-
ferential equation
a’G r*
e <L2 -3 cosh 2u> =0 ©6)

which has a general solution given by

Ge = Jey,)(h, cosh u), O0=su=uy (7a)
Ge = feq, (h, u, u, O<u=uy (7b)
where
fe, (h, uy, u) = Ye, (h, cosh u,)Je,(h, cosh u)

— Je (h, cosh uy)Ye,(h, cosh u)
Je, (h, cosh u) = first kind even radial Mathieu function
Ye, (h, cosh u) = second kind even radial Mathieu function

Ge = even Green’s function

Here, for simplicity we have only considered the even solution; the
odd solution has a similar format.
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The solution of (5) is then constructed as follows
{Jem)(h, cosh u),
e =
feqy (b, uy, u),

However, equation (8) still does not satisfy the continuity condi-
tion at the point u = u,. i.e.

05§u<u0

Uy < u < uy. ®)

G|u=u(; = G:Iu=u;r (93)
dG dG|
da, _,- - E‘.u=u3 =06(v — vp) (9b)

For condition (9a) to be satisfied, (8) requires a modification of the
magnitude; thus
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the following cigenvalues and normalized eigenfunctions,

Se, (h, cos v)

N = n; Ve,= —2—"——7> 14

N AT (’

Again only the even solutions are considered; the odd solutions

have a similar format. Now as the functions are complete and or-
thonormal, we have by [2, p. 264]

3

Se, (h, cos v) Se, (h, cos vy)
NS 0
8w =~ w) = 2 M)

(15)

also by [2, p. 259] for any continuous function F(r), we have

Se, (h, cos v) Se, (h, cos vgy)

F(Ly) 6(v — vy) = n§0 F(n)

e (16)
G Je(LZ)(h’ COSh u)fe(Lz)(ha Uy, uo), O =u< Uy Mn(h)
e =
Jewsy(h, uy, u)Jeg,, (h, cosh ug), Uy < u < uy. (10)  Using (16) to simplify (12), one has
Getu, v| ) % Je, (h, cosh u) fe, (h, u;, uy) Se, (h, cos v)Se, (h, cos vy)
ey, Uiy, U = ’
o o = M (h)Je, (h, cosh u;)
0=<u=<u <y ' (17a)
In a similar manner, the odd Green’s function is then
& Jo,(h, cosh u) fo,(h, u;, uy)So, (h, cos v)So, (R, €O vy)
= Z n n n
Go(u, vjuo, v) = 2 M2(h)Jo! (h, cosh u;)
O0=sus=s Uy = Uy (17b)
Applying condition (9b) to (10), we have where
dG| daG Jo,(h, uy, uy) = Yo (h, cosh u;)Jo, (h, cosh uy)
T T L= Je {1,y (h, cosh uy) feq,,(h, uy, upy)
u=1ug u=uy — Jo),(h, cosh u;) Yo, (h, cosh uy);
= feira) (B, uy, ug) ey, (h, cosh uy). the complete Green’s function is then given by
G, viug, vy) = Ge(u, vlug, vy) + Gou, viug, vy). (18)

With some manipulation and the fact that fe(,, (h, g, uy) = 1 (i.e.
the Wronskian W(Je,, Ye,) = 1), we arrive at

dG

T (11)

= Je(y, (h, cosh u;)

U=y

u=u,

Thus for condition (9b) to be satisfied, (10) has to be multiplied by
8(v — vp)/Jel,,(h, cosh u,), hence we have

(Je(Lz)(h’ cosh u) feq,, (B, uy, ) 6(v — 1)
Jely, (h, cosh uy) ’

O=su=<uy <uy

Q
1l

fe(Lz)(ha Ui u)Je(Lz)(ha cosh uO) S — UO)
Je 1,y (h, cosh u;)

s

\ O0<uy=<u=u. (12)

Equation (12) is the complete even solution of (2b). However, this
solution as it stands is impractical, as it involves a complicated
function of the operator L,. To obtain a useful solution, further
transformations are required. For these transformations, the eigen-
values and normalized eigenfunctions of the operator L, are needed.
These are obtained by assuming L, is constant. This results in the
homogeneous equation
2 2
édv—lz/+ <L1 —1—12-—005211>V=O (13)

which is the circumferential Mathieu differential equation and has

Note that the above Green’s function is for a unit impulse only, to
obtain the Green’s function for the patch one needs only to multiply
equation (18) by jwud.

III. IMPEDANCE

The elements of the impedance matrix for a multiport elliptic
disk are given by

1
ZU = W—J- SW' SW] G(S'So) ds dSO (19)
For the elliptic patch, this reduces to
12 vit A pyt 4
Z’J = I/VIVVJ SU,_A, Sl,j-Aj G(u,, U|u], Uo)
- [sinh? u, + sin? v]'/? [sinh? u + sin? v51'/? doy do
20)
where
W, = Width of Port,
A, = sin™! [ L }
T 20sinh? u; + sin® o]
Substituting for Go from (17) and defining
i+ A
Se,(h, v, A,, u,) = S Se, (h, cos v)
v =4
- [sinh? u, + sin? 2]'2dv  (21a)
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Fig. 2. Four port elliptic patch.
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Fig. 3. Experiment and theoretical results for |S;; |.

v+ A

ISo,(h, v, A, u;) = S So, (h, cos v)
A,

u—
< [sinh? u; + sin? 0]'? dv.  (21b)

The above integrals can be evaluated using numerical integration.

joudl®
VV, VV} n=1

M8

-
Z, =

Jo,(h, cosh u,)ISo,(h, v,, A, u,)1So,(h, v,, A, u;)
' Me(h)Jo ! (h, cosh u;) '

The impedance elements are then given by (23b)
; 2 = Je,(h, cosh u,) fe,(h, u;, u)ISe,(h, v,, A, u)ISe,(h, v,, A, u,)
ze = fopd s, e A (222)
v WW, n=0 M; (h)Je, (h, cosh u,)
. jooud!? % Jo,(h, cosh, u,) fo,(h, uy, u)ISo,(h, v,, A, u,)IS0,(h, v,, A, u)
Y W,W, n=1 Mo (h)Jo},(h, cosh u;)
0<u<u < uy (22b)
where The matrix elements are then
e, (h, uy, uy) = Ye, (h, cosh u;)Je,(h. cosh
f ( 1 0) ( 1) € ( Cos uO) Zz; — Z; + ZZ (24)

— Je] (h, cosh url YYe, (h, cosh uy)
Jo,(h, uy, uy) = Yo, (h, cosh u;)Jo, (h, cosh uy)
— Jo,,(h, cosh u;) Yo, (h, cosh u,).

For the special case when u, = u,, i.e. when the Jth ports are at
the periphery j using the Wronskian of Mathieu functions, the
impedance matrix elements reduce to

7o = Jopdl*
YW W, a0
Je, (h, cosh u,)1Se, (h, v, A,, u,)1Se,(h, v,, A}, uy)
M:; (h)Je, (h, cosh u;)

(23a)

IV. EXPERIMENTAL AND THEORETICAL RESULTS

A four port elliptic was fabricated with dimensions of 4.6 cm
major axis and 3.6 cm minor axis. The substrate was 1.524 mm
thick, with ¢, = 2.5. The ports were located at (30°, 150°, 210°,
330°) respectively, see Fig. 2, having width = 4.4 mm and imped-
ance of 50 Q. The experimental and theoretical responses of the
patch are shown in Figs. 3-6. It should be pointed out that con-
nector effects have not been accounted for, and the radiation losses
have not been included in the calculation. However, the effective
size and permittivity of the patch are used in the computation.
Bearing this in mind, the agreement between theory and experiment
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is fairly good below 8 GHz, but understandably, diverges away
gracefully above 8 GHz.
The effective permittivity used is given by

e + 1
€eff — )

e — 1 [ . 10d T”
2 l(cosh u; + sinh u;)

where u; = tanh ™! (Major/Minor).

The effective major and minor axis are calculated using

1/2
2d Ta
= 1+=~—=!In{—) + 1.7726 .
et "[ m[“<2d> ﬂ

V. CONCLUSION

Elliptic cross-section devices have not been utilized much in the
past, due to numerical difficulty and the resultant computational
effort required to accurately predict the response. The Green’s
function for the elliptic patch derived in this paper reduces the com-
putational effort considerably. High degree of convergence was
achieved with about n = 12 modes.

APPENDIX
ForMs orF MATHIEU FUNCTIONS

The definition followed in this paper are as given by Morse [1],
with some modifications. There are several different series for eval-
uating Mathieu functions. The reader should be aware that some
published series [1] and [3] are not convergent over the whole
z-plane. It has been found during the course of the computation of
Mathieu functions, that the following forms of Mathieu series are
highly convergent.

First kind even circumferential Mathieu function

Sezn s (h, cos v) = go Ao+ p €08 2m + p)v. (25)
First kind odd circumferential Mathieu function

804+ p(h, cOS V) = Z—lo By, ., sin 2m + p)v. (26)

First kind even radial Mathieu function

Jes 1 p(h, cosh w)

w ad -
- ,\/: ;0 (_l)n mA2m+pJZm +p(h7 cosh u). (27)

First kind odd radial Mathieu function

Joy, + p(h, cosh u) = \/%tanhu 2 (=prm
m=0

* @2m + DByt pJomp(h, coshu).  (28)
Second kind even radial Mathieu function
Ye,, (h, cosh u)
T
——Ei(—l"‘”‘A Y, lh” J, lh — 29)
_A0m=0 ) 2mm2e mze
Ye,, . i (h, cosh u)
K
——Zi( H"""4 [Y lh" J lh““
- A] o0 2m m+1 2 € m 2 e
1., 1,
+ Y, Ehe T+ 1 Ehe . 30)
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Second kind odd radial Mathieu function

Yo, . ,(h, cosh u)

Gl
2 o 1
= B27p m2=]0 (_1)n_mBZm+p ]:Ym+1 <§ he“) Jm——1+p
1., 1, 1,
‘<'2-h€ >—Ym,,+p<5he>Jm+1<Ehe >}

(3D
Where p € {0, 1} and J,,, Y,, are the conventional Bessel functions.

The normalization constants are

2r
Su(h) = SO [Ses, (h, cos v)]* dv

1 m=0
2 m+# 0

27 Z_]OAgm/am: Oy = {

@

2
Mj, (b)) = So [Sezn 1 (h, cos 0))* dv = g Al

m=0

@

2
P By s p.
m=1

M(2)n+p(h) = SO [S02n+p(h’ Cos U)]z dv
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On The Modal Expansion of Resonator Field in the
Source Region

A. S. Omar, E. Jensen, and S. Liitgert

Abstract—Two field expansions for the electromagnetic field radiated
by electric and magnetic currents in a cavity resonator are presented.
The first utilizes the cavity resonant modes only, while the other uti-
lizes, in addition, the irrotational modes. The first expansion is shown
to be more suitable if the exciting currents have volume distributions.
On the other hand, the second expansion is more suitable if the reso-
nator contains surface or filamentary current distributions. Typical ex-
amples are given to demonstrate the convergence behavior of the two
expansions near and within the source region.

INTRODUCTION

In a field-theoretical analysis of microwave tubes, e.g., kly-
strons, magnetrons, travelling wave tubes, gyrotrons, and oro-
trons, one can divide the describing equations of the structure into
two systems of equations. The first system expresses the electro-
magnetic field in terms of the exciting current(s). It is just Max-
well’s equations with source terms. This system is linear if a small
signal approximation is considered or if the nonlinear materials are
replaced by polarization currents which can be added to the exci-
tation ones. The second system describes the influence of the elec-
tromagnetic field on the motion of the electrons. It expresses then
the exciting current(s) in terms of the excited field. This system is
usually nonlinear except for the small signal analysis. The two sys-
tems must be solved simultaneously. They can be considered to
represent a feedback system with a linear forward transmission and
a nonlinear backward transmission. Well-established methods of
control theory can consequently be applied to this feedback system
in order to study the featuring characteristics like stability, starting
and sustaining oscillation conditions, modulation, noise perfor-
mance, etc.

The analysis of the linear system can be done in either time or
frequency domain. In this paper, the analysis will be conducted in
frequency domain. If time-domain information are needed, e.g.,
for the nonlinear system, an inverse Fourier transform must be
made. Because the interaction between the electron beam and the
electromagnetic wave in most of the microwave tubes takes place
inside a cavity resonator, which may be either partially or com-
pletely shielded, the excited electromagnetic field can be expressed
as expansions in terms of the empty cavity modes. These modes
can be classified into divergence-free modes (which are the cavity
resonant modes) and curl-free (or irrotational) modes.

The accuracy and convergence of these expansions is particu-
larly important within the electron beam, i.e.. in the source region,
because accurate expressions for the electromagnetic field within
the beam are necessary for the accurate solution of the nonlinear
system (i.e., the electrons’ equations of motion). It is the aim of
this letter to study the different possible expansions along with their
accuracy and convergence in the source region.
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